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Ab tract C
Information theoretic parameters are described which measure the

asymmetry of polyhedra based on partitions of their vertices, faces,

and edges into orbits under action of their symmetry point groups. Such

asymmetry parameters are all zero only for the five regular polyhedra

and are all unity for polyhedra having no symmetry at all, i.e.,

belonging to the 1 symmetry &point group. In all other cases such

asymmetry parameters ehave values between zero and unity. Values for

such asymmetry 'parameters are given for all topologically distinct

%polyhedra having five, six, and seven vertices; all topologically

distinct oeight-vertex polyhedra having at least six symmetry elements;

and selected polyhedra having from nine to twelve vertices. Effects

of polyhedral distortions on these asymmetry parameters are examined

for the tetrahedron, .trigonal, bipyramid,.square pyramid, and octahedron.

Such information theoretic asymnetry *parameters can be used to order

site partitions which are incomparable by the chirality algebra methods

of Ruch and co-workers

-IL-:



1. Introduction

Symmetry is an important property of chemically significant

polyhedra. In this connection a variety of descriptors can be used

to define the symmetry of polyhedra. The most conventional polyhedral

symmetry descriptor uses the symmetry point group [2]. Using this

approach an ticrease in the symetry of a polyhedron leads to an increase

in the size of its point group. A related symmetry descriptor uses

the cycle index polynomial for all of the symmetry operations of the

polyhedron in question [3]. An increase in symmetry leads to more

terms in the cycle index polynomial.

Such symmetry descriptors may be regarded as additive since an

increase in symmetry leads to an increase in the size of the symmetry

descriptor, i.e., the.point group or the cycle index polynomial. Other

alternative symmetry descriptors are subtractive. Chirality algebra

[4,5,6] provides an example of a subtractive symnetry descriptor since

an increase in the symmetry of the system decreases the number of chiral _

site partitions.

This paper discusses a new type of subtractive symmetry descriptor

also based on site partitions but having information theory [7,81 rather

than group representation theory [4,91 as its mathematical basis. This

approach represents an extension of work of Bonchev, Kamenski, and

Kamenska [8] on the information content of chemical structures. The

approach in this paper defines information theoretical asymmetry

parameters for the vertices, edges, and faces of a polyhedron such

that these parameters are all zero for the five regular polyhedra [101

and all unity for polyhedra having no symmetry, i.e., polyhedra having

. . °



.- . .7- -.. . . . . . . . -

C1 point group symmetry. These asymmetry parameters are functions

solely of the site partitions of the vertices, the centers of the faces

("faces"), and the midpoints of the edges ("edges") of the polyhedron

in question and in this sense have a similar genesis as the chirality

functions [4,5] arising from chirality algebra. However, the fact

that the asymmetry parameters are always fractions ranging from zero

for systems in which all sites of a given type (i.e., vertices, faces,

or edges) are equivalent (i.e., in the same orbit of the symmetry point

group) to unity in systems having no synmetry (i.e., each site of a

given type is its own orbit in the C1 point group) facilitates comparison

of the symmetries of systems having radically different numbers of

sites or symmetry point groups of different structures.

This paper defines such information theoretic asymmetry parameters

for polyhedra. The values of these parameters are then examined for

jll polyhedra having seven or less vertices, all eight-vertex polyhedra

having at least six symmetry elements, and selected polyhedra of chemical

significance having nine through twelve vertices. Finally, this paper J
examines effects on such asymmetry parameters upon distortion of

polyhedra of particular chemical importance: namely the tetrahedron,

trigonal bipyramid, square pyramid, and octahedron.

2. Method

The polyhedron asymmetry parameters discussed in this paper are

* functions solely of the site partitions, where the sites are the

* vertices, the midpoints of the edges, or the midpoints of the faces.

The site partitions are described by symbols of the type



(albla2b ... banb) where ai and bi are small positive integers and ai .ai+.

(li<n). In this symbol for the site partition there are bi sets of

ai identical sites. The ai identical sites correspond to an orbit

of the symmetry group. Thus, if all of the N sites of a given type

(i.e., vertices, faces, or edges) are equivalent, the site partition

is represented as (N1 ), abbreviated further as (N). Conversely, if

all of the N sites of a given type are different (i.e., if there is

no syummetry whatsoever), the site partition is represented as (1N).

For example, the site partitions of a trigonal bipyramid are (32) for

the five vertices (i.e.., three equatorial and two axial), (6) for the

six (equivalent) faces, and (63) for the nine edges (i.e., six

axial-equatorial and three equatorial-equatorial edges.

The information content of a site partition can be obtained

from the following basic equation of Shannon7:

nK" -E pi Ig pi ()

In equation 1, n is the number of orbits, pi is the probability of

the site being in orbit i, lg is a logarithm to the base 2, and I is

the average information content per site. The probability pi is obtained

from the quotient Ni/N where N is the total number of sites and Ni

is the number of sites in orbit i. For example, for the vertices of

a trigonal bipyramid which correspond to a site partition (32),

I = -(3/5)lg(3/5) - (2/5)lg(2/5) = 0.4422 + 0.5288 - 0.9710 (2)

Note that if all of the sites are equivalent, there is only one orbit,
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the probability of being in the orbit is 1 so that the average

information content per site is zero, i.e., I = -ig 1 - 0.

The maximum value of I for a collection of N sites occurs when

all sites are different, i.e., the system has no symmetry so that each

site is its own orbit. For such a fully asymmetric system

- - lg(l/N) (3)

In equation 3 I0 represents the average information content per site

for a fully asymmetric system. We can now define an asymmetry parameter

As for N sites of type s (i.e., vertices, faces, or edges) by the

quotient

As I/ °  (4)

where I and Io are defined as in equations 1 and 3, respectively. For "",

the vertices of a trigonal bipyramid with the site partition (32)

A(32) (3/5)(3/5) - (2/5)lg(2/5) 0.971 0.4182 (5)
-lg(1/5) 2.3221

Note that these asymmetry parameters depend only upon the site

partitions. Furthermore, for N sites the asymmetry parameter for the

fully symmetric site partition (N) is 0, that for the fully asymmetric

site partition (1N) is 1, and the asymmetry parameters for other site

partitions fall between 0 and 1.

A further feature of the asymmetry parameter As defined in equation

4 is that for a given number of sites N, A. can only have a finite

,- .. .. ~~~.. ......... - .-..-.-.- ' ...- "...-..
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number of discrete values, since there are only a relatively small

number of ways for partitioning an integer N into a sum of smaller

integers, i.e., 5, 7, 11, 14, and 22 such partitions for N = 4, 5,

6, 7, and 8, respectively. For this reason, only in a small number

of exceptional cases other than the fully symmetric AN) - 0 and fully

asymmetric A(1N) - 1 can asymmetry parameters be matched for partitions

of different numbers of sites. These relatively rare matching of

asymmetry parameters for small values of N include A(22) - A(422) -

0.5 and A(212) - A(2312) - 0.75.

A feature of the chirality algebra of Ruch and co-workers [4,51

is the recognition of some sets of different partitions of n sites

as incomparable. This occurs when two different partitions of the

same number of sites are ordered differently by different, equally

valid, procedures. The simplest such pairs are the (32) and (412)

partitions and the (23) and (313) partitions of six sites. The

information theoretic asymmetry parameters for such incomparable site

partitions may be distinct thereby providing a basis for ordering site

partitions which are incomparable by the methods of Ruch and co-workers

3. Results

The asymmetry parameters depend only on the site partitions and

are given below for all possible partitions of four to eight sites:

A) Four Sites: A(4) 0; A(31) - 0.4057; A(22) - 0.5; A(21 2) - 0.75;

* A(14 ) i.

B) Five Sites: A(M) - 0; A(41) - 0.3109; A(32) 0.4182; A(312 ) -

0.5905t A(221) - 0.6555; A(213 ) - 0.8278; A(15 ) 1.

* * " " " "* °*2 , .* ' ' . - ,- ." : -= ' ', " ° _ _ * * " -° ' * % . _* - - "-" ° " I - ' . . . . . ." "



C) Six Sites: A(6) - 0; A(51) = 0.2515; A(42) = 0.3552; A(32) = 0.3868;

A(412 ) , 0.4842; A(321) = 0.5645; A(23 ) , 0.6132; A(31 3) = 0.6935;

A(22 12 ) - 0.7421; A(214 ) - 0.8711; A(16) - 1.

D) Seven Sites: AM7 0; A(61) -0.2113; A(52) -0.3075; A(43)

0.3510; A(51 2) = 0.4093; A(421) - 0.4911; A(32 1) - 0.5161; A(322 )

- 0.5322; A(413) = 0.5929; A(3212 ) 0.6563; A(314 ) 0.7580; A(2213)

= 0.7965; A(215 ) - 0.8378; A(17) - 1.

E) Eight Sites: A(8) 0; A(71) - 0.1812; A(62) - 0.2704; A(53) -

0.3182; A(42) - 0.3333; A(61 2) - 0.3537; A(521) = 0.4329; A(431) -

0.4686; A(422) = 0.5; A(51 3) - 0.5163; A(322) = 0.5205; A(421 2) -

0.5833; A(3212) 0.6038; A(32 21) S 0.6352; A(414 ) - A(24 ) = 0.6667;

A(3213 ) 0.7186; A(23 12 ) = 0.75; A(31 5) - 0.8019; A(22 14) = 0.8333;

A(216 ) = 0.9167; A(18) 1.

Table 1 lists the asymmetry parameters for all topologically distinct

polyhedra having five, six and seven vertices. The properties of these

polyhedra are taken from Federico's extensive tabulation of polyhedra

having from four to eight faces [111 by conversion of the polyhedra

to their duals [12,131; the number of the dual of the polyhedron in

question in Federico's table [111 is given to facilitate comparison.

The polyhedra in Table 1 are ordered by increasing values of Ae, the

edge asymmetry parameters, since among the three asymmetry parameters

Av, Af, and Ae , the parameter Ae has the maximum number of possible

values because a given polyhedron has more edges than either vertices

or faces by Euler's theorem, i.e.

v + f e -2 (6)

.o -
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This, coupled with the intermediate dimensionality of edges (1) relative

to vertices (0) and faces (2), suggests that Ae might be a better measure

of polyhedral asymmetry than either Av or Af.

The asymmetry parameters of polyhedra having the comxon symmetry

point groups fall into characteristic ranges. Thus the Ae values for

polyhedra having the order 2 point groups Cs and C2 fall in the range

0.7 to 0.8 whereas those having the order 4 point group C2v fall in

the range 0.5 to 0.65. Furthermore, since the asymmetry parameters

depend only on site partitions, all three asymn:etry parameters will

be identical for two cr more polyhedra having identical site partitions

for their vertices, faces, and edges. Such a set of polyhedra can

be called isoentropic because of the relationship of information content

to entropy [141. Examples of isoentropic seven-vertex polyhedra include P-.

the seven seven-vertex polyhedra having no symetry; a set of three

seveu-vertex polyhedra with AV  0.7964, Af 0.7897, and Ae - 0.7749;

a set of three seven-vertex polyhedra with Av  0.7964, Af - 0.7500,

and Ae - 0.7921; and four pairs of isoentropic seven-vertex polyhedra

having Ae values of 0.5578, 0.5943, 0.7506, and 0.7749 (Table 1). For

a pair of dual [12,131 polyhedra P and P' (e.g., Federico dual numbers

#35 and #38 in Table 1) Ae Ae ' A Af' and Af A.' in accord 1
with the preservation of the symmetry of a polyhedron while constructing

its dual.

According to Federico [111 the total number of combinatorically

distinct eight-vertex polyhedra is 257, which is an intractable number

for detailed study. However, if we exclude from consideration the

large numbers of relatively uninteresting eight-vertex polyhedra having

the relatively low symmetry point groups C2v, C2 , C., and C1 , the



remaining number of eight-vertex polyhedra drops drastically to 14,

a manageable number but still including the eight-vertex polyhedra

of greatest chemical interest (151. Table 2 lists the asymetry

parameters of some nine- to twelve-vertex polyhedra that have arisen

in chemical contexts.

A given polyhedron has three asymmetry parameters Av, Af, and

Ae corresponding to the site partitions for the vertices, faces, and

edges, respectively. All three of these parameters are zero only for

the five regular polyhedra [10], namely the tetrahedron, octahedron

(Table 1), cube (Table 2), icosahedron (Table 3), and regular

(pentagonal) dodecahedron. Bipyramids, prisms, antiprisms, and the

dual of the truncated tetrahedron (Table 2) have a single zero asymmetry

parameter and the semiregular cuboctahedron [161 has zero valves for

AV and Ae but not Af.

Asymmetry parameters can also be used to follow the progress of

distortion of relatively symmetrical polyhedra when symmetry elements

are removed. Table 4 illustrates the effects of distortions on asymmetry

parameters for four chemically significant polyhedra, namely the

tetrahedron, trigonal bipyramid, square pyramid, and octahedron. Several

different distortion pathways of the octahedron are examined in Table

4 depending on which symmetry elements (e.g., the C3 axis or a Gh

symmetry plane) are destroyed first in the distortion process. Note

that as symmetry elements are removed in these distortion processes,

the values of the asymmetry. parameters increase in accord with

expectations.

Acknowledgment: I am indebted to the U.S. Office of Naval Research

for partial support of this work under Contract N00014-84-K-0365.
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